EMT: a DGA-based tool for (electromagnetic)
simulations

Matteo Cicuttin

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica

std: :meeting @ University of Udine

October 21, 2014

Introduction
®0000000000

Outline

This talk is about EMT, a simulation tool based on the Discrete
Geometric Approach. Currently it can solve electromagnetic wave
propagation problems in the frequency domain, but it can be extended to
solve various physical problems. Today we will talk about

@ Some theory about the problem we want to solve

@ Something about the internals of the code

@ Why C+4++ helped me in building it

Introduction
O@000000000

Time Harmonic Maxwell Equations

The whole electromagnetism is described by the Maxwell's equations:
@ Ampere-Maxwell equation: V x h = jwd + js
o Faraday-Neumann equation: V x e = —jwb
@ Electric Gauss law: V-d =p
@ Magnetic Gauss law: V-b =10
Moreover, there are the constitutive relations
@ Electric constitutive relation: d = ce
@ Magnetic constitutive relation: b = ph

@ Ohm’s law: j=ce

Introduction
0O0@00000000

Electromagnetic wave propagation (in frequency domain)

From Maxwell equations we can obtain the wave propagation equation in
the frequency domain:

@ Take the Ampere-Maxwell equation: V x h = jwd + js.

@ Substitute h = vb: V x (vb) = jwee + js
e Using Faraday-Neumann: V x (vV x e) = —iw(iwee + js)
o Rearrange terms: V x (vV x e) — w?ce = —iwjs

We are not interested in the imposed currents, so we could write the
propagation problem as follows:

Vx (vV xe)—w?e=0

Swapping the equations and repeating the same procedure we obtain the
complementary formulation:

V x (6V x h) —w?uh =0

How do we solve that problem?

Introduction
0O00e0000000

Discrete Geometric Approach

The general idea is:
@ Discretize the domain of interest 2 in tetrahedral elements
@ Solve the discrete Maxwell equations s.t. boundary conditions

@ Interpolate quantities on volume elements to obtain the fields

Linear system
Ax=Db
obtained from
discretization

Introduction
O000@000000

Discretizing the domain

The discretization of Q is done by means of tetrahedral elements, which
form the primal complex G. The barycentric subdivision of G induces
another grid, the dual complex G.

Different integral quantities are associated
to different geometric entities, on both G
and G. For example:

@ Primal edges: electromotive force

@ Primal faces: magnetic fluxes

@ Dual edges: magnetomotive forces

W:f§d~ds

@ Dual faces: electric fluxes

Introduction
0O0000e00000

Discretizing the equations

We write the Maxwell equations in the discrete domain as follows:

e F-N: CU = —iwo
e A-M: CTF = jwW + I,

C is the face-edge incidence matrix

. n3
U: electromotive force .
®: magnetic flux \\
F: magnetomotive force om
W: electric flux .

s no\\
Note the perfect similarity to the \
continuous ones: n
V xe=—iwb

V x h = iwd + o =ty s = 2

A very interesting fact is that the discrete equations are exact: we
haven't introduced any approximation yet!

Introduction
00000080000

Discretizing the constitutive relations

In addition to the discrete Maxwell equations, we need the discrete
constitutive relations:

Discrete form ‘ Continuos form
F~M,® h=vb
v~ MU d=ce

The matrices M, and M, are the constitutive matrices which relate
quantities on the primal grid and quantities on the dual grid.

They are the approximate counterparts of v and e (they are exact only
for constant fields in the tetrahedron)l, so this is the place where we
introduce an approximation.

I will not discuss them further, since it is an extensive topic.

1. Codecasa and F. Trevisan, “Piecewise uniform bases and energetic approach for
discrete constitutive matrices in electromagnetic problems”

Introduction
00000008000

Discrete geometric equations

Now we are ready to solve the DGA equations to obtain the discrete
propagation problem:

o Take the Ampere-Maxwell equation: C™F = jwW + I,

@ Substitute F = M, ®

e Using Faraday-Neumann: C"M,CU = —jw(iwM.U + 1)
@ Rearrange terms: C" M, CU — w?*M. U = —iwl;

We are not interested in the imposed currents, so we could write the
propagation problem as follows:

C™M,CU - w?>MU =0

Swapping the equations and repeating the same procedure we obtain the
complementary formulation:

C"MCF — w?M,F =0

Introduction
00000000800

Boundary conditions

The propagation problem in the form we obtained in the previous slide is
not very interesting, we need the boundary conditions which, for now, are
of four types:
@ Perfect Electric Conductor: the electric field on a given boundary is
zero (Shorted transmission line)
@ Perfect Magnetic Conductor: the magnetic field on a given boundary
is zero (Open transmission line)
o Admittance: a surface with a given wave admittance (transmission
line closed on a load)
@ Port: a surface where an electromagnetic wave can enter (the
generator)
But to introduce them we need a slight generalization of the problem!

Introduction
0000000000

Admittance boundary conditions

The admittance boundary condition is imposed by considering the
contribution of the boundary to the circulation of h:

Our aim is achieved by modifying
the Ampere-Maxwell law

C'F-F’ =iwW +1,
Neglecting s our problem becomes
[o0
C"M,CU — w’M.U + iwF® =0

where “b” remind us that we are € €
dealing with boundary edges.

But we have an equation in U and F®! We need to introduce a new
matrix, which relates MMFs and EMFs on the boundary edges:
F> = My U?, the admittance matrix. Our new problem is

C"M,CU — w?M.U + iwMyU®? = 0

Introduction
000000000 0e

Port boundary conditions

Consider the equation of previous slide:
C"M,CU — w’M.U + iwF® =0

instead of writing F® = My U®? we could write F® = My U® + 2F?" .

This allows us to separate the A ¢ h~
components entering 0 from the

~b
e
components leaving Q. /
p g / 5 X ~__ 90

The problem then becomes
C"M,CU — w’M.U + iwMyU®? = —2jwF®

which is the full electromagnetic wave propagation problem in the
frequency domain.

The code
000

Why a new code?

Goal: study electromagnetic phenomena inside anechoic chambers
Obstacles:
@ matrices resulting from discretization have bad convergence
properties (they are indefinite) = direct solvers
@ anechoic chambers are big = /ots of elements
@ high frequency = tons of elements
@ presence of antennas and other objects = fine geometrical details
= too many elements
Necessity: reducing the number of elements in the discretization, having
a tool where to implement and study equivalent models of the objects

inside the chamber.
There isn't any code providing such capabilities.

The code

o] lo}

Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell (figure), the basic
unit of an anechoic wall.

@ 2 X 2 cones
@ 3 x 3 ferrite tiles

Our goal is to try to substitute the cones Cones Ferritetiles)
and the ferrites with a 2D surface.

The code
o] lo}

Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones \ /
and ferrite tiles with a 2D surface. Idea: \

i

11 Cones Ferrite tiles” 11

+z
@ use the port to apply a plane wave
on X

The code
o] lo}

Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:

@ use the port to apply a plane wave
on X

@ calculate wave impedance on a
plane far away from cones

i

11 Cones Ferrite tiles” 11

+z

The code
o] lo}

Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:

@ use the port to apply a plane wave
on X

@ calculate wave impedance on a
plane far away from cones

@ translate impedance on the
rightmost end of the cell

/

1 ~/

i

11 Cones Ferrite tiles” 11

|
T
z=0

+z

Zn — iZc tan(Bz)

Ziy(2) = 7. EN " e tanlPz)
w(z) =25 —7 tan(fz)

The code
o] lo}

Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:

i

11 Cones Ferrite tiles” 11

1 ~/
>

+z
@ use the port to apply a plane wave

on X Zn — iZc tan(Bz)
e calculate wave impedance on a Ze — izn tan(5z)
plane far away from cones

@ translate impedance on the AN
rightmost end of the cell

@ substitute cones and ferrites with
that equivalent impedance

S W
=

The code
[ele] J

Equivalent model for anechoic walls: results

The proposed equivalent model gave very good results
@ it allowed 20x reduction of mesh elements
@ it allowed 60x reduction of computation times

@ in the whole area of interest the relative error was below 5%

Electric field in complete and equivalent models Error between complete and equivalent model

1.4 50
1.2
40
— 1
£ ®
= =
08 530
- @
2 o
g Z
506 2 2
E * o
Y4
10
0.2 * Real (446k elems) Cy
© _Equivalent (22K elems)
0

0
-0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4 0.6

The code
{ Jele]e]

Equivalent radiating elements

We would like to have a simple object (a sphere) that radiates a field
equivalent to the one that is radiated by a more complex antenna

@ Simulate the real antenna with NEC/HFSS/FEKO
@ Calculate the field on the reference sphere

@ Insert the sphere (that radiates the calculated field) in the

simulation environment
(€™, C 7\Wv2()us =0

Two regions:
e Total field Yy Fe
@ Scattering field @

The formulation allows to evaluate (insi-

de .the sphere) only the “reaction” of the L

environment.

(cTMvc\3 W)U =0

The code
(o] lele]

Equivalent radiating elements: results

Applicability conditions of the model
@ the sphere must have dimensions similar to A

o the field must be calculated sufficiently far away from the sphere
(>A/2)

calcilated aba(E) ——v— caloulsted abs(E) —w— _

- - oom =
o.004 = 0.004
expocted abelE). —v— expocted abe(E). —wi—
.02 =
o002 - 0.2 -
0 - 0= 0=
o002 = o002 =" 0.002 =
o.004 = .00 - i - oom = . -
' ' i i 1 ' ' ' i P '
0.008 0,004 0,002 o 0.002 0,004 0,006 0.004 0.002 o 0.002 0.004 0.004 0.002 ° 0.002 0.004

Under these conditions, the model gives very good results!

The code
{e]e] o]

Anechoich chamber models

But the code was built to simulate entire anechoic chambers...

Experiments have shown that the
predictions of the code are very
accurate!

e
si

Etectric feld (dBuVim)
osf
5332

The code
{eJele]]

Other applications and features

The developed tools (both theoretical and software) allow to do other
interesting things:

Waveguide propagation

Adaptive mesh refinement Perfectly matched layers

LR

The code
[Jelele)

The code (1)

How do we translate all this theory in code? The general strategy to
solve a numerical problem with DGA is

@ Read the geometry

Read simulation parameters (frequency, boundary conditions,
materials, ...)

Assemble the linear system of the discretized problem
Solve it
Interpolate quantities (for example to get E and H)

Output them in some format

The code
(o] lele)

The code (2)

Writing a Matlab script that solves our problem is not too difficult, but
we would like to have something more flexible. In particular we want a
code that is:

o Expandable and understandable. It should be easy to:

o code new problems
o add new numerical solvers
o add new data import/export procedures

@ Modular. If something breaks it must not break surrounding things
@ Debuggable and correct.

o Efficient. We want to be able to scale from small problems to very
big ones

To achieve these goals some ingredients are needed:
@ A serious implementation language: C++11

@ A good design: no code is written “on the fly", without thinking
about the structure

o Efficient memory usage and parallelism

The code

e big picture

Seript

|

y
Runner

EMTMatrix

EMTVector

Simulation
results

The code
[e]e]e])

How does it look?

Time for a little demo!

® OO0 3. ./emt (emt) =)

 src
Compiler version string: "4.2.1 Compatible Clang 3.4 (trunk) (llvm/trunk 192180)"

HWN threads available: 8
[0] emt>>

EMT for programmers

EMT for programmers

An important goal of EMT is to be programmer-friendly. I'll try to show
you some examples on how C++ helped me in giving a clear structure to
the code, leading to easy growth of the whole project:

@ What is an EMT module and how you write one
@ How the numerical solvers are interfaced
@ How poorly written Fortran code is hidden behind simple interfaces

@ The geometry representation and how it leads to safe code and
simplifies parallel execution

EMT for programmers

[Je]

The EMT modules

The code is composed by modules: if you want to solve a propagation
problem, you enter the propagation module. The modules are one
example of the extendability of EMT.

- src
Compiler version string: "4.2.1 Compatible Clang 3.4 (trunk) (1lvm/trunk 192180)"

HW threads available: 8
[@] emt>> enter propagation
[@] emt/propagation>>

Modules are “templates” (not in the C++ sense!) that allow the
programmer to code new problems in a simple way. All the modules
(even an empty one) provide access

@ to the geometry
@ to all the numerical solvers
@ to the data 1/O facilities

EMT for programmers
oe

Coding a new problem

Modules encode in some way the general strategy we mentioned some
slides ago. Coding a new problem is simply matter of

@ creating a new module by subclassing EMTProblemModule (some
10s LOCs)

@ writing a system assembler (the hardest part)

o telling the solver to run (1 LOC)

@ choosing which data to export (some 10s LOCs)

o registering your brand new module with the system (1 LOC)

Let's see some code, the electrostatics module.

EMT for programmers
[1]

The numerical solvers

Another example of extendability is how the numerical solvers are
interfaced. Each problem benefits from specific solvers (BiCGstab vs.

multigrid vs...) and there are plenty of libraries implementing them, each
with its own interface.

In EMT to call all of them you need only to know that some solver exists.

EMTVector *b = _owner->solver()->get_knowns();
b->set_value(ni_comp, -u, true);
continue;
}
/* Ask the solver to run x/
std::cout << "Solving..." << std:iendl; EMTMatrix *A = _owner->solver()->get_matrix();
. . . nj_comp = _owner—>_sc.toCompressed(nj_orig);
_owner->solver()->solve(); A->set_value(ni_comp, nj_comp, mGtEG(i,j), true);

This is possible with the Factory, an OOP design pattern.

EMT for programmers
(o] J

How solvers are interfaced

Whichever solver you get, and whichever matrix/vector format it
supports, you only need to

e make it look like the generic solver (by subclassing EMTSolver),
EMTMatrix and EMTVector

@ register it with the system

SiloExporter

Runner

el |

EMTSolver

Specific
Vectors

After this, all the modules of EMT are aware of the new solver and able
to use it. How? You make your choice at runtime with the solver
command we already seen.

EMT for programmers
@0000000

Representing the geometry

The problem domain €2, as we already know, is discretized in a
tetrahedral grid which could be composed of millions of elements. A
good representation of the geometry has direct impact on

@ the performance and the scalability of the code
o the safety of the code
Let's see some requirements

Keep track of single nodes, edges, triangles and tetrahedrons
Each element is composed by the indices of its points

°
@ Each element must have an identifier

@ Discard duplicates while building data structure
o

Fast lookup of elements in both directions (index — element and
element — index)

Add operations to the elements of the geometry easily

EMT for programmers
0@000000

Geometry data structure example

Point | X Y Z Edge | Points
1 X1 Y1 71 1 1 2
2 Xy Y2 72 2 1 3
3 X3 Y3 73 3 2 3
4 X4 Y4 Za 4 2.5
5 X5 Y5 Z5 5 3 4
6 3 5
Node | Points 7 4 5
1 1
2 2 Triangle ‘ Points >
3 3 1 1 2 3 x
4 4 2 2 3 5
5 5 3 3 4 5

EMT for programmers
[e]e] le]ele]ele]

Geometry data structure implementation

Each geometric object (Node, Edge...) has its own class Node, Edge, ...
Let's see some code = simplex.hpp

EMT for programmers
[e]e] le]ele]ele]

Geometry data structure implementation

Each geometric object (Node, Edge...) has its own class Node, Edge, ...
Let's see some code = simplex.hpp

@ One implementation, all possible dimensions

@ Only one place to touch when maintenance is needed

@ std::array (C++11) is a wrapper around C arrays —

e exact memory usage known
e no memory allocator overhead of std::vector
o safe

They are kept in Index<T> which are wrappers around std: :vector<T>
and provide O(1) direct lookups and O(log n) inverse lookups.

EMT for programmers
[e]e]e] lelelele]

Preventing programmer’s mistakes

W N e

Let's go back to that strange inheritance...

template<size_-t dimension>
class Simplex : public ldentifiableObject <Simplex<dimension>>

Do you remember that each element has its own identifier? How it is
possible to be sure that you are not using a triangle index where an edge
index is required?

There is a TMP pattern called Curiously Recurring Template Pattern:
let's see how it allows us making impossible to introduce this kind of bug.

EMT for programmers
[e]e]e]e] lelele]

Operations on the geometric elements

Operations on the geometric elements are done by means of Visitors. A
Visitor is a well-known OOP design pattern which allows us to clearly
separate algorithms from structures on which they operate.

There is no structure to traverse, so
e it is not the classical application of

@ + visit(ConcreteElement) the Visitor, but

A @ Element “hierarchy” is static
‘ Element ‘ ‘ cancretlevlsllor ‘ and Sh0u|d never require
i + acz:ep\/r's/'mr) i i + visit(ConcreteElement) i mo d Ifl cat | on
@ Adding operations is frequent
The Visitor pattern seems to be a

good choice.

EMT for programmers
[e]e]ele]e] lele]

Using the visitors

How to get the barycenter of a tetrahedron using a Visitor?

Tetrahedron t = ges—>lookup_tetrahedron(tet_idx);

BarycenterVisitor bv;
t.accept(bv);
Point barycenter = bv.getResult();

oW N e

In the code there are tens of Visitors performing lots of tasks, from the
simplest ones (calculation of volumes, barycenters, ...) to the most
complex ones (system assembly, field interpolation). It looks complicated,
but...

EMT for programmers
00000080

EMT and parallel execution

...an interesting fact about Visitors is that they are designed to not share

state, so you get parallel execution at no cost (except memory
bandwidth):

std :: vector<Point> barycenters;

using PVR = ParallelVisitorRunner<BarycenterVisitor , Tetrahedron>;
PVR pvr(barycenters);

pvr.run();

p W e

EMT is almost entirely parallel and can use all the cores you throw at it!

EMT for programmers
0000000e

Wrapping up Fortran crap...ahem...code!

template<typename T>

Historically, Fortran had no pre-
T foo(T x)

processor. So, if you need so-
mething that in C++ reads like
this —

return x4-4;

R W e

In Fortran you end up having

1| FUNCTION foo_f(x) 1| FUNCTION foo.d(x) 1| FUNCTION foo_c(x)
2| real :: x; 2| double :: x; 2| complex :: x;

31 foo_f = x+1; 31 foo.d = x+1; 3] foo_c = x+1;

4| RETURN 4| RETURN 4| RETURN

5| END FUNCTION 5| END FUNCTION 5| END FUNCTION

This is no joke, but the sad truth! The best numerical solvers around
(MUMPS, PARDISO, AGMG) do the nastiest things known to the
mankind in order to deal with different data types.

How could C++ help us in isolating that? Let's see the code of the
MUMPS wrapper.

C++ in scientific computing
®0000000

Typical objections to C++ in scientific computing

In many years, | heard too many unfounded things about C++. The
funniest ones:

C++ is slower than Fortran

The level of abstraction of template metaprogramming leads to slow
code.

C++ has no complex numbers

Memory footprint of C++ programs is larger than Fortran and not
controllable

C+-+ compilers do a poor job in code optimization

There are no linear algebra libraries for C++

C++ in scientific computing
O®@000000

Myth 1: C4++ is slower than Fortran

Fortran makes some assumptions that, in average, allow the code of users
unaware of what is going on under the hood run at decent speeds.
Examples:

o Parameter passing: Fortran uses byref, the C++ default is byval. If
you want byref you must use &. Passing a 100x100 matrix by value,
obviously slows down your code a bit!

@ Pointer aliasing: Fortran assumes that two pointers point to
non-overlapping memory, but C++ assumes that they overlap. If
you want to override this, you must use the keyword restrict?.

@ Virtual methods: they have to be correctly dealt with

C++ makes conservative assumptions that make your program run
safely. So, normally, C++ speed problems are not in the language itself,
but between keyboard and chair.

2Only in first approximation: (maybe) C++17 will address thesproblem correctly.

C++ in scientific computing
0O0@00000

Myth 2: Template metaprogramming is slow

The quick answer to this objection is “please go and do some
experiments (or read the assembly generated by the compiler)”.

With template metaprogramming you can give to the compiler lots of
useful information about your intentions, so it can make some
assumptions that otherwise cannot. Actually, template metaprogramming
is a way to make your code run faster.

An interesting example comes from some C++ linear algebra libraries:
thanks to TMP, these libraries can choose, in a sequence of matrix
operations, the order of operations which runs faster. And at compile
time!

C++ in scientific computing
[e]e]e] le]elele]

Myth 3: C4++ has no complex numbers

Complex numbers are part of the STL.

#include <complex>

std :: complex<double> z(1,3);

Thanks to template metaprogramming, complex numbers and their
operations are optimized for the particular type on which you instance
them.

C++ in scientific computing
[e]e]e]e] lelele]

Myth 4: C4+4 memory footprint is big and uncontrollable

Well, if you use STL without thinking about what you're doing, it is not
too easy to understand how you're using memory...but in C++ memory
is controllable at the bit level.

The representation of the geometry in EMT is an example.

C++ in scientific computing
[e]e]e]e]e] lele]

Myth 5: C4++ compilers do a poor optimization job...

...which in almost all cases translates in “programmers write poor code”.

C++ is the language of choice in every kind of software project, so
optimizers inside compilers received lots of attention. Actually there are
cases in which they are really smart:

http://stackoverflow.com/questions/11227809 /why-is-processing-a-sorted-
array-faster-than-an-unsorted-array

C++ in scientific computing
O00000e0

Myth 6: There are no linear algebra libraries for C4++

| know at least 4 of them:
@ Armadillo
o Eigen
@ pblas (in Boost)

@ Newmat

C++ in scientific computing
O000000e

Some words about Armadillo

EMT uses Armadillo (http://arma.sourceforge.net/).
@ It has matlab-like syntax
@ It uses automatically BLAS and LAPACK if found
@ It is open source
@ It is very fast

Conclusions
@00

Conclusion

Maybe this talk was boring for expert C++ programmers, but it was not
intended as a showcase of C++ tricks.

The real goal was to show how C++ is a powerful tool also in fields
where normally is not considered an option, as in numerical software.

The language, coupled with (minimal) good software engineering
pratices, allowed me to write from the ground up a software in a domain
where my knowledge was close to zero.

C++ helped me in

organizing the code in a really structured and modular way
not sacrificing performance, scalability and expandability

("]
°
@ excluding entire classes of stupid but hardly debuggable bugs
@ avoiding domino effect when | took the wrong route

("]

Conclusions
oeo

Conclusion

All this doesn't mean that my code is perfect! Some parts of the code
could (and should) be rewritten in a better way and there are some

modules where code is rotting...but taking care of all the 40000 lines of
code requires time!

Conclusions
[e]e] J

Thank you!

Thank you for your attention!

| would like to hear your comments, questions and suggestions
matteo.cicuttin@uniud.it

	Introduction
	Introduction

	The code
	Why a new code?
	Radiating elements
	Introduction

	EMT for programmers
	The modules
	The numerical solvers
	The geometry

	C++ in scientific computing
	C++ in scientific computing

	Conclusions
	Conclusions

