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Outline

This talk is about EMT, a simulation tool based on the Discrete
Geometric Approach. Currently it can solve electromagnetic wave
propagation problems in the frequency domain, but it can be extended to
solve various physical problems. Today we will talk about

Some theory about the problem we want to solve

Something about the internals of the code

Why C++ helped me in building it
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Time Harmonic Maxwell Equations

The whole electromagnetism is described by the Maxwell’s equations:

Ampère-Maxwell equation: ∇× h = iωd + js

Faraday-Neumann equation: ∇× e = −iωb

Electric Gauss law: ∇ · d = ρ

Magnetic Gauss law: ∇ · b = 0

Moreover, there are the constitutive relations

Electric constitutive relation: d = εe

Magnetic constitutive relation: b = µh

Ohm’s law: j = σe
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Electromagnetic wave propagation (in frequency domain)

From Maxwell equations we can obtain the wave propagation equation in
the frequency domain:

Take the Ampère-Maxwell equation: ∇× h = iωd + js .

Substitute h = νb: ∇× (νb) = iωεe + js

Using Faraday-Neumann: ∇× (ν∇× e) = −iω(iωεe + js)

Rearrange terms: ∇× (ν∇× e)− ω2εe = −iωjs

We are not interested in the imposed currents, so we could write the
propagation problem as follows:

∇× (ν∇× e)− ω2εe = 0

Swapping the equations and repeating the same procedure we obtain the
complementary formulation:

∇× (ξ∇× h)− ω2µh = 0

How do we solve that problem?
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Discrete Geometric Approach

The general idea is:

Discretize the domain of interest Ω in tetrahedral elements

Solve the discrete Maxwell equations s.t. boundary conditions

Interpolate quantities on volume elements to obtain the fields

=⇒
Linear system

Ax = b
obtained from
discretization

=⇒
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Discretizing the domain

The discretization of Ω is done by means of tetrahedral elements, which
form the primal complex G. The barycentric subdivision of G induces
another grid, the dual complex G̃.

Different integral quantities are associated
to different geometric entities, on both G
and G̃. For example:

Primal edges: electromotive force

Primal faces: magnetic fluxes

Dual edges: magnetomotive forces

Dual faces: electric fluxes

U =
∫
L e · dl

Ψ =
∫
S̃ d · ds
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Discretizing the equations

We write the Maxwell equations in the discrete domain as follows:

F-N: CU = −iωΦ

A-M: CTF = iωΨ + Is

U: electromotive force
Φ: magnetic flux
F: magnetomotive force
Ψ: electric flux

Note the perfect similarity to the
continuous ones:

∇× e = −iωb
∇× h = iωd + js

C is the face-edge incidence matrix

n0

n1

n3

n2

u0 − u3 + u4 = iωΦ2

A very interesting fact is that the discrete equations are exact: we
haven’t introduced any approximation yet!
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Discretizing the constitutive relations

In addition to the discrete Maxwell equations, we need the discrete
constitutive relations:

Discrete form Continuos form

F ≈ MνΦ h = νb
Ψ ≈ MεU d = εe

The matrices Mε and Mν are the constitutive matrices which relate
quantities on the primal grid and quantities on the dual grid.
They are the approximate counterparts of ν and ε (they are exact only
for constant fields in the tetrahedron)1, so this is the place where we
introduce an approximation.
I will not discuss them further, since it is an extensive topic.

1L. Codecasa and F. Trevisan, “Piecewise uniform bases and energetic approach for
discrete constitutive matrices in electromagnetic problems”
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Discrete geometric equations

Now we are ready to solve the DGA equations to obtain the discrete
propagation problem:

Take the Ampère-Maxwell equation: CTF = iωΨ + Is

Substitute F = MνΦ

Using Faraday-Neumann: CTMνCU = −iω(iωMεU + Is)

Rearrange terms: CTMνCU− ω2MεU = −iωIs

We are not interested in the imposed currents, so we could write the
propagation problem as follows:

CTMνCU− ω2MεU = 0

Swapping the equations and repeating the same procedure we obtain the
complementary formulation:

CTMξCF− ω2MµF = 0
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Boundary conditions

The propagation problem in the form we obtained in the previous slide is
not very interesting, we need the boundary conditions which, for now, are
of four types:

Perfect Electric Conductor: the electric field on a given boundary is
zero (Shorted transmission line)

Perfect Magnetic Conductor: the magnetic field on a given boundary
is zero (Open transmission line)

Admittance: a surface with a given wave admittance (transmission
line closed on a load)

Port: a surface where an electromagnetic wave can enter (the
generator)

But to introduce them we need a slight generalization of the problem!
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Admittance boundary conditions

The admittance boundary condition is imposed by considering the
contribution of the boundary to the circulation of h:

Our aim is achieved by modifying
the Ampère-Maxwell law

CTF− Fb = iωΨ + Is

Neglecting Is our problem becomes

CTMνCU− ω2MεU + iωFb = 0

where “b” remind us that we are
dealing with boundary edges.

∂Ω

ẽbeb

f̃

But we have an equation in U and Fb! We need to introduce a new
matrix, which relates MMFs and EMFs on the boundary edges:
Fb = MY Ub, the admittance matrix. Our new problem is

CTMνCU− ω2MεU + iωMY Ub = 0
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Port boundary conditions

Consider the equation of previous slide:

CTMνCU− ω2MεU + iωFb = 0

instead of writing Fb = MY Ub we could write Fb = MY Ub + 2Fb− .

This allows us to separate the
components entering Ω from the
components leaving Ω.

∂Ω

e+

h+

n̂

n̂

eb

ẽb

e− h−

−n̂

The problem then becomes

CTMνCU− ω2MεU + iωMY Ub = −2iωFb

which is the full electromagnetic wave propagation problem in the
frequency domain.
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Why a new code?

Goal: study electromagnetic phenomena inside anechoic chambers
Obstacles:

matrices resulting from discretization have bad convergence
properties (they are indefinite) =⇒ direct solvers

anechoic chambers are big =⇒ lots of elements

high frequency =⇒ tons of elements

presence of antennas and other objects =⇒ fine geometrical details
=⇒ too many elements

Necessity: reducing the number of elements in the discretization, having
a tool where to implement and study equivalent models of the objects
inside the chamber.
There isn’t any code providing such capabilities.
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Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell (figure), the basic
unit of an anechoic wall.

2 × 2 cones

3 × 3 ferrite tiles

Our goal is to try to substitute the cones
and the ferrites with a 2D surface.
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The paper presents how a port boundary condition could be modeled in the context of the Discrete Geometric Approach (DGA).
The port allows to apply a plane wave excitation to a specific boundary of the computational domain, a capability that DGA was
lacking. A methodology for the construction of an equivalent model of an anechoic wall is then presented as an application of the
developed theory. The advantages of the resulting model are twofold: taking into account all the geometric details of the anechoic
material requires more computational resources. Moreover, when an entire anechoic chamber is to be modeled, it is easier to deal
with a flat wall rather than one covered with cones and ferrite tiles. The proposed equivalent model allows for a great semplification,
while maintaining a good degree of accuracy.

Index Terms—Anechoic wall, Discrete Geometric Approach, Port Boundary Conditions

I. INTRODUCTION

THE aim of this work is to formulate a Port Boundary
Condition (PBC) for the Discrete Geometric Approach

(DGA), a numerical method useful to solve a wide class of
problems, in particular the full electromagnetic wave propa-
gation problem [1]. The PBC allows to apply a plane wave
excitation to the simulation domain boundaries but also per-
mits to the reflected waves to exit. An application of the port
aimed to construct an equivalent electromagnetic model of a
real anechoic wall is then presented, since numerical modeling
of anechoic chambers is a very actual topic [4], [5].

An anechoic wall is composed by a number of basic
elements which we call unitary cells (Fig. 1). A cell consists of
four distinct regions: from left to right, the first one represents
the air in front of the wall, the second accommodates the
absorbing cones, the third is air again and the fourth is where
the ferrite tiles are placed. The leftmost surface ⌃ represents
the port, where a plane wave of angular frequency ! and wave
vector normal to ⌃ is forced. The study of an entire wall
reduces essentialy to the study of that unitary cell, which is
also the computational domain ⌦ where the numerical problem
is defined. Then, the wave impedance is calculated on a plane
⇧ (Fig. 3) parallel to ⌃ internal to ⌦ and far enough from
cones so that their perturbation effect is negligible. Finally,
using standard formulae from transmission line theory, the
impedance Z⇧ calculated on ⇧ is de-embedded to the right
side of the unitary cell, obtaining Z⇧0 . In this way, the original
model with cone-ferrite assembly can be replaced by an
equivalent one made of an empty volume terminated with the
de-embedded impedance Z⇧0 . Such an equivalent model will
enable us to simulate an entire anechoic wall and not just an
unitary cell, with quite good accuracy, reduced computational
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⌃

Ferrite tilesCones

Fig. 1. The unitary cell, which consists of the port ⌃, air (light gray), cones
(dark gray) and ferrites (surface at the right).

effort and ease of modeling, since the required number of mesh
elements is much smaller and only flat surfaces are involved.

The article starts with a brief review of the continuous wave
propagation problem, together with its discrete counterpart; in
addition the admittance boundary conditions are recalled, both
in the continuous and discrete setting. In section IV the article
goes through the details behind the port boundary condition.
Finally the application is described and numerical results are
presented.

II. THE ELECTROMAGNETIC PROBLEM

The electromagnetic wave propagation problem in the fre-
quency domain at angular frequency ! is obtained directly
from the Maxwell’s equations

r⇥ e(r) = �i!b(r), (1)
r⇥ h(r) = i!d(r) + js(r), (2)

together with the constitutive relations

d(r) = ✏(r)e(r), (3)
h(r) = ⌫(r)b(r), (4)

where d, e, h, b are complex-valued vector functions of
the position vector r 2 ⌦, representing respectively electric
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Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:

use the port to apply a plane wave
on Σ

calculate wave impedance on a
plane far away from cones

translate impedance on the
rightmost end of the cell

substitute cones and ferrites with
that equivalent impedance
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This last formula establishes a relation between the tangential
components of the electric and magnetic fields exiting ⌦: they
are proportional to each other by the factor Y , the wave
admittance of ⌃. The direct implication is that only waves
exiting ⌦ with normal incidence will experience no reflection.

According to (12), boundary condition for the exiting com-
ponent of the field are written as

Fb+
= MY U+, (20)

where Fb+ and U+ are the magnetomotive and electromotive
forces due to the exiting wave. Moreover, MY satisfies (20)
exactly when the tangential components of the electric field
are piecewise uniform on each element of ⌃.

B. Tangent electric field entering ⌦

A similar reasoning can be carried out for the field compo-
nent entering ⌦. In this case (17) is considered, yielding

h�
t ⇥ n = �Y e�

t . (21)

Again, (21) can be directly translated in discrete form

Fb� = �MY U�, (22)

where Fb� and U� are the magnetomotive and electromotive
forces due to the entering wave. This second equation, as will
be shown below, involves known quantities and is used to
impose the exitation on the port. Again, it relates exactly the
tangential components of the electric and magnetic fields, so
it permits to apply a plane wave with normal incidence to ⌃.

C. Obtaining the linear system

Since the fields are decomposed in entering and exiting
components, it holds that

Fb = Fb+
+ Fb�, (23)

U = U+ + U�. (24)

The array U is formed by two contributes. The electromotive
force due to the imposed exitation, which is fully known, is
expressed by U� and is nonzero only in correspondence of
the entries of the primal boundary edges of ⌃. The array U+,
on the other hand, is unknown and in correspondence of the
primal edges of ⌃ it accounts for the electromotive force due
to the wave exiting ⌦. Starting from (23) and using (20) and
(24), discrete port boundary conditions are deduced

Fb = Fb+
+ Fb� = MY U+ + Fb�

= MY (U � U�) + Fb�

= MY U + 2Fb�.

(25)

Finally, by substituting Fb from (25) in (13) we obtain

(CT M⌫C � !2M✏)U + i!MY U = �2i!Fb�, (26)

which allows to apply a magnetic field excitation, computing
the entries F b�

i of Fb� as

F b�
i =

Z

ẽbi

h� · dl. (27)

⇧⌃ Cones
+z

z = 0

Ferrite tiles ⇧0

Fig. 3. Sectional view of the cone-ferrite assembly (not to scale). The port ⌃,
the impedance calculation plane ⇧ and the impedance de-embedding plane
⇧0 are indicated.

where ẽbi are the auxiliary dual edges of ⌃. Otherwise, if an
electric field excitation is wanted, (22) can be used to obtain

(CT M⌫C � !2M✏)U + i!MY U = 2i!MY U�, (28)

and computing the entries U b�
i of U� as

U b�
i =

Z

ebi

e� · dl, (29)

where ebi are the primal edges of ⌃.

V. EQUIVALENT MODEL

The original model of the unitary cell represents the cone-
ferrite assembly in full detail. Material parameters of ferrites
and cones were obtained from vendor datasheets. Such detailed
modeling requires a very fine discretization that implies the
need of more computing and memory resources. For this
reason, when a full anechoich chamber has to be simulated, the
number of elements could become prohibitive, so a simplified
model is wanted.

A. Wave impedance calculation
Once the problem (26) is solved, wave impedance can be

calculated everywhere in ⌦. In our application it is calculated
on a plane ⇧ placed at z = 0, parallel to the boundary wall
(Fig. 3). A grid of 20⇥20 points was defined on the plane
⇧ and then the tetrahedrons containing these points were
identified. For each tetrahedron T1, . . . , Tn wave impedance
values Z1, . . . , Zn were calculated. Finally, wave impedance
on ⇧ is obtained from

Z⇧ =
1

n

nX

i=1

Zn. (30)

B. Equivalent wall model
The calculated impedance Z⇧ must now be de-embedded

to the boundary ⇧0 at the back of the ferrite tiles, obtaining
a new impedance Z⇧0 . Impedance Z⇧0 is calculated using a
standard formula from transmission line theory [3]

Z⇧0(z) = Zc
Z⇧ � iZc tan(�z)

Zc � iZ⇧ tan(�z)
, (31)

where Zc =
p

µ/✏ is the characteristic impedance of the space
where the wave propagates. Z⇧0(z) is a function of z, the
distance of ⇧0 from ⇧.

ZΠ′ (z) = Zc
ZΠ − iZc tan(βz)

Zc − iZΠ tan(βz)
,
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⌃

+z

⇧0

Air

Fig. 4. Sectional view of the equivalent model (not to scale). The whole
volume of the equivalent cell is made of air and the de-embedded impedance
condition is applied on the plane ⇧0
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Fig. 5. Electric field compairson between full and equivalent model.

VI. NUMERICAL RESULTS

Two models of the unitary cell were developed, one with
full details and one composed entirely by air and terminated by
an impedance calculated as in (31). Simulation was performed
on the first model, imposing a plane wave excitation on ⌃ with
an incident electric field of 1 V/m. Then wave impedance was
calculated on the plane ⇧, sampling ⇧ on 400 evenly spaced
points distributed on a 20⇥20 grid. Impedance Z⇧0 was then
calculated according to (31) and used as boundary condition
on the simplified model. Finally the port boundary condition
was used again to impose a plane wave with the same
characteristics of the previous experiment on the boundary ⌃
of the simplified model. Numerical results (Fig. 5, 6) confirm
the good quality of the equivalent simplified model since the
error was below 5% in most of the zone of interest, despite
the drastic reduction (20 times) of the number of elements.

Experiments were made with EMT, a new, general pur-
pose DGA workbench written in C++11. The simulations
were performed on MacOS X 10.9.2 running on a Core i7
3615QM with 16GB of RAM, Clang/LLVM 3.4 compiler
and MKL PARDISO solver. The full model mesh included

about 446000 tetrahedrons, which gave rise to a problem of
485572 unknowns. Problem assembly took 8.34s, while the
solver took 55.22s. The simplified model consisted of about
22000 tetrahedrons, which gave rise to a problem of 26624
unknowns: assembly time was 0.45s while the solver took
0.48s.
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Fig. 6. Percent relative error made by the equivalent model compared with
the full one.

VII. FINAL REMARKS

A novel port boundary condition was developed in the
framework of the Discrete Geometric Approach. The new
tool was used to study a piece of an anechoic wall in full
detail, with the goal of obtaining an equivalent model of the
real anechoic wall. In the context of the DGA the developed
port boundary condition is a wide generalization of the wave
propagation problem since it collects in a single equation a
number of other important boundary conditions.
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Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:
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calculate wave impedance on a
plane far away from cones
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This last formula establishes a relation between the tangential
components of the electric and magnetic fields exiting ⌦: they
are proportional to each other by the factor Y , the wave
admittance of ⌃. The direct implication is that only waves
exiting ⌦ with normal incidence will experience no reflection.

According to (12), boundary condition for the exiting com-
ponent of the field are written as

Fb+
= MY U+, (20)

where Fb+ and U+ are the magnetomotive and electromotive
forces due to the exiting wave. Moreover, MY satisfies (20)
exactly when the tangential components of the electric field
are piecewise uniform on each element of ⌃.

B. Tangent electric field entering ⌦

A similar reasoning can be carried out for the field compo-
nent entering ⌦. In this case (17) is considered, yielding

h�
t ⇥ n = �Y e�

t . (21)

Again, (21) can be directly translated in discrete form

Fb� = �MY U�, (22)

where Fb� and U� are the magnetomotive and electromotive
forces due to the entering wave. This second equation, as will
be shown below, involves known quantities and is used to
impose the exitation on the port. Again, it relates exactly the
tangential components of the electric and magnetic fields, so
it permits to apply a plane wave with normal incidence to ⌃.

C. Obtaining the linear system

Since the fields are decomposed in entering and exiting
components, it holds that

Fb = Fb+
+ Fb�, (23)

U = U+ + U�. (24)

The array U is formed by two contributes. The electromotive
force due to the imposed exitation, which is fully known, is
expressed by U� and is nonzero only in correspondence of
the entries of the primal boundary edges of ⌃. The array U+,
on the other hand, is unknown and in correspondence of the
primal edges of ⌃ it accounts for the electromotive force due
to the wave exiting ⌦. Starting from (23) and using (20) and
(24), discrete port boundary conditions are deduced

Fb = Fb+
+ Fb� = MY U+ + Fb�

= MY (U � U�) + Fb�

= MY U + 2Fb�.

(25)

Finally, by substituting Fb from (25) in (13) we obtain

(CT M⌫C � !2M✏)U + i!MY U = �2i!Fb�, (26)

which allows to apply a magnetic field excitation, computing
the entries F b�

i of Fb� as

F b�
i =

Z

ẽbi

h� · dl. (27)

⇧⌃ Cones
+z

z = 0

Ferrite tiles ⇧0

Fig. 3. Sectional view of the cone-ferrite assembly (not to scale). The port ⌃,
the impedance calculation plane ⇧ and the impedance de-embedding plane
⇧0 are indicated.

where ẽbi are the auxiliary dual edges of ⌃. Otherwise, if an
electric field excitation is wanted, (22) can be used to obtain

(CT M⌫C � !2M✏)U + i!MY U = 2i!MY U�, (28)

and computing the entries U b�
i of U� as

U b�
i =

Z

ebi

e� · dl, (29)

where ebi are the primal edges of ⌃.

V. EQUIVALENT MODEL

The original model of the unitary cell represents the cone-
ferrite assembly in full detail. Material parameters of ferrites
and cones were obtained from vendor datasheets. Such detailed
modeling requires a very fine discretization that implies the
need of more computing and memory resources. For this
reason, when a full anechoich chamber has to be simulated, the
number of elements could become prohibitive, so a simplified
model is wanted.

A. Wave impedance calculation
Once the problem (26) is solved, wave impedance can be

calculated everywhere in ⌦. In our application it is calculated
on a plane ⇧ placed at z = 0, parallel to the boundary wall
(Fig. 3). A grid of 20⇥20 points was defined on the plane
⇧ and then the tetrahedrons containing these points were
identified. For each tetrahedron T1, . . . , Tn wave impedance
values Z1, . . . , Zn were calculated. Finally, wave impedance
on ⇧ is obtained from

Z⇧ =
1

n

nX

i=1

Zn. (30)

B. Equivalent wall model
The calculated impedance Z⇧ must now be de-embedded

to the boundary ⇧0 at the back of the ferrite tiles, obtaining
a new impedance Z⇧0 . Impedance Z⇧0 is calculated using a
standard formula from transmission line theory [3]

Z⇧0(z) = Zc
Z⇧ � iZc tan(�z)

Zc � iZ⇧ tan(�z)
, (31)

where Zc =
p

µ/✏ is the characteristic impedance of the space
where the wave propagates. Z⇧0(z) is a function of z, the
distance of ⇧0 from ⇧.

ZΠ′ (z) = Zc
ZΠ − iZc tan(βz)

Zc − iZΠ tan(βz)
,
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Fig. 4. Sectional view of the equivalent model (not to scale). The whole
volume of the equivalent cell is made of air and the de-embedded impedance
condition is applied on the plane ⇧0

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Electric field in complete and equivalent models

z

E
 m

a
g
n
itu

d
e
 (

V
/m

)

 

 

Real (446k elems)
Equivalent (22k elems)

Fig. 5. Electric field compairson between full and equivalent model.

VI. NUMERICAL RESULTS

Two models of the unitary cell were developed, one with
full details and one composed entirely by air and terminated by
an impedance calculated as in (31). Simulation was performed
on the first model, imposing a plane wave excitation on ⌃ with
an incident electric field of 1 V/m. Then wave impedance was
calculated on the plane ⇧, sampling ⇧ on 400 evenly spaced
points distributed on a 20⇥20 grid. Impedance Z⇧0 was then
calculated according to (31) and used as boundary condition
on the simplified model. Finally the port boundary condition
was used again to impose a plane wave with the same
characteristics of the previous experiment on the boundary ⌃
of the simplified model. Numerical results (Fig. 5, 6) confirm
the good quality of the equivalent simplified model since the
error was below 5% in most of the zone of interest, despite
the drastic reduction (20 times) of the number of elements.

Experiments were made with EMT, a new, general pur-
pose DGA workbench written in C++11. The simulations
were performed on MacOS X 10.9.2 running on a Core i7
3615QM with 16GB of RAM, Clang/LLVM 3.4 compiler
and MKL PARDISO solver. The full model mesh included

about 446000 tetrahedrons, which gave rise to a problem of
485572 unknowns. Problem assembly took 8.34s, while the
solver took 55.22s. The simplified model consisted of about
22000 tetrahedrons, which gave rise to a problem of 26624
unknowns: assembly time was 0.45s while the solver took
0.48s.
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Fig. 6. Percent relative error made by the equivalent model compared with
the full one.

VII. FINAL REMARKS

A novel port boundary condition was developed in the
framework of the Discrete Geometric Approach. The new
tool was used to study a piece of an anechoic wall in full
detail, with the goal of obtaining an equivalent model of the
real anechoic wall. In the context of the DGA the developed
port boundary condition is a wide generalization of the wave
propagation problem since it collects in a single equation a
number of other important boundary conditions.
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Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:

use the port to apply a plane wave
on Σ

calculate wave impedance on a
plane far away from cones

translate impedance on the
rightmost end of the cell

substitute cones and ferrites with
that equivalent impedance
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This last formula establishes a relation between the tangential
components of the electric and magnetic fields exiting ⌦: they
are proportional to each other by the factor Y , the wave
admittance of ⌃. The direct implication is that only waves
exiting ⌦ with normal incidence will experience no reflection.

According to (12), boundary condition for the exiting com-
ponent of the field are written as

Fb+
= MY U+, (20)

where Fb+ and U+ are the magnetomotive and electromotive
forces due to the exiting wave. Moreover, MY satisfies (20)
exactly when the tangential components of the electric field
are piecewise uniform on each element of ⌃.

B. Tangent electric field entering ⌦

A similar reasoning can be carried out for the field compo-
nent entering ⌦. In this case (17) is considered, yielding

h�
t ⇥ n = �Y e�

t . (21)

Again, (21) can be directly translated in discrete form

Fb� = �MY U�, (22)

where Fb� and U� are the magnetomotive and electromotive
forces due to the entering wave. This second equation, as will
be shown below, involves known quantities and is used to
impose the exitation on the port. Again, it relates exactly the
tangential components of the electric and magnetic fields, so
it permits to apply a plane wave with normal incidence to ⌃.

C. Obtaining the linear system

Since the fields are decomposed in entering and exiting
components, it holds that

Fb = Fb+
+ Fb�, (23)

U = U+ + U�. (24)

The array U is formed by two contributes. The electromotive
force due to the imposed exitation, which is fully known, is
expressed by U� and is nonzero only in correspondence of
the entries of the primal boundary edges of ⌃. The array U+,
on the other hand, is unknown and in correspondence of the
primal edges of ⌃ it accounts for the electromotive force due
to the wave exiting ⌦. Starting from (23) and using (20) and
(24), discrete port boundary conditions are deduced

Fb = Fb+
+ Fb� = MY U+ + Fb�

= MY (U � U�) + Fb�

= MY U + 2Fb�.

(25)

Finally, by substituting Fb from (25) in (13) we obtain

(CT M⌫C � !2M✏)U + i!MY U = �2i!Fb�, (26)

which allows to apply a magnetic field excitation, computing
the entries F b�

i of Fb� as

F b�
i =

Z

ẽbi

h� · dl. (27)

⇧⌃ Cones
+z

z = 0

Ferrite tiles ⇧0

Fig. 3. Sectional view of the cone-ferrite assembly (not to scale). The port ⌃,
the impedance calculation plane ⇧ and the impedance de-embedding plane
⇧0 are indicated.

where ẽbi are the auxiliary dual edges of ⌃. Otherwise, if an
electric field excitation is wanted, (22) can be used to obtain

(CT M⌫C � !2M✏)U + i!MY U = 2i!MY U�, (28)

and computing the entries U b�
i of U� as

U b�
i =

Z

ebi

e� · dl, (29)

where ebi are the primal edges of ⌃.

V. EQUIVALENT MODEL

The original model of the unitary cell represents the cone-
ferrite assembly in full detail. Material parameters of ferrites
and cones were obtained from vendor datasheets. Such detailed
modeling requires a very fine discretization that implies the
need of more computing and memory resources. For this
reason, when a full anechoich chamber has to be simulated, the
number of elements could become prohibitive, so a simplified
model is wanted.

A. Wave impedance calculation
Once the problem (26) is solved, wave impedance can be

calculated everywhere in ⌦. In our application it is calculated
on a plane ⇧ placed at z = 0, parallel to the boundary wall
(Fig. 3). A grid of 20⇥20 points was defined on the plane
⇧ and then the tetrahedrons containing these points were
identified. For each tetrahedron T1, . . . , Tn wave impedance
values Z1, . . . , Zn were calculated. Finally, wave impedance
on ⇧ is obtained from

Z⇧ =
1

n

nX

i=1

Zn. (30)

B. Equivalent wall model
The calculated impedance Z⇧ must now be de-embedded

to the boundary ⇧0 at the back of the ferrite tiles, obtaining
a new impedance Z⇧0 . Impedance Z⇧0 is calculated using a
standard formula from transmission line theory [3]

Z⇧0(z) = Zc
Z⇧ � iZc tan(�z)

Zc � iZ⇧ tan(�z)
, (31)

where Zc =
p

µ/✏ is the characteristic impedance of the space
where the wave propagates. Z⇧0(z) is a function of z, the
distance of ⇧0 from ⇧.

ZΠ′ (z) = Zc
ZΠ − iZc tan(βz)

Zc − iZΠ tan(βz)
,
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Fig. 4. Sectional view of the equivalent model (not to scale). The whole
volume of the equivalent cell is made of air and the de-embedded impedance
condition is applied on the plane ⇧0
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VI. NUMERICAL RESULTS

Two models of the unitary cell were developed, one with
full details and one composed entirely by air and terminated by
an impedance calculated as in (31). Simulation was performed
on the first model, imposing a plane wave excitation on ⌃ with
an incident electric field of 1 V/m. Then wave impedance was
calculated on the plane ⇧, sampling ⇧ on 400 evenly spaced
points distributed on a 20⇥20 grid. Impedance Z⇧0 was then
calculated according to (31) and used as boundary condition
on the simplified model. Finally the port boundary condition
was used again to impose a plane wave with the same
characteristics of the previous experiment on the boundary ⌃
of the simplified model. Numerical results (Fig. 5, 6) confirm
the good quality of the equivalent simplified model since the
error was below 5% in most of the zone of interest, despite
the drastic reduction (20 times) of the number of elements.

Experiments were made with EMT, a new, general pur-
pose DGA workbench written in C++11. The simulations
were performed on MacOS X 10.9.2 running on a Core i7
3615QM with 16GB of RAM, Clang/LLVM 3.4 compiler
and MKL PARDISO solver. The full model mesh included

about 446000 tetrahedrons, which gave rise to a problem of
485572 unknowns. Problem assembly took 8.34s, while the
solver took 55.22s. The simplified model consisted of about
22000 tetrahedrons, which gave rise to a problem of 26624
unknowns: assembly time was 0.45s while the solver took
0.48s.
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Fig. 6. Percent relative error made by the equivalent model compared with
the full one.

VII. FINAL REMARKS

A novel port boundary condition was developed in the
framework of the Discrete Geometric Approach. The new
tool was used to study a piece of an anechoic wall in full
detail, with the goal of obtaining an equivalent model of the
real anechoic wall. In the context of the DGA the developed
port boundary condition is a wide generalization of the wave
propagation problem since it collects in a single equation a
number of other important boundary conditions.
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Equivalent model for anechoic walls

The port boundary condition is crucial to
study the unitary cell, to substitute cones
and ferrite tiles with a 2D surface. Idea:

use the port to apply a plane wave
on Σ

calculate wave impedance on a
plane far away from cones

translate impedance on the
rightmost end of the cell

substitute cones and ferrites with
that equivalent impedance
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This last formula establishes a relation between the tangential
components of the electric and magnetic fields exiting ⌦: they
are proportional to each other by the factor Y , the wave
admittance of ⌃. The direct implication is that only waves
exiting ⌦ with normal incidence will experience no reflection.

According to (12), boundary condition for the exiting com-
ponent of the field are written as

Fb+
= MY U+, (20)

where Fb+ and U+ are the magnetomotive and electromotive
forces due to the exiting wave. Moreover, MY satisfies (20)
exactly when the tangential components of the electric field
are piecewise uniform on each element of ⌃.

B. Tangent electric field entering ⌦

A similar reasoning can be carried out for the field compo-
nent entering ⌦. In this case (17) is considered, yielding

h�
t ⇥ n = �Y e�

t . (21)

Again, (21) can be directly translated in discrete form

Fb� = �MY U�, (22)

where Fb� and U� are the magnetomotive and electromotive
forces due to the entering wave. This second equation, as will
be shown below, involves known quantities and is used to
impose the exitation on the port. Again, it relates exactly the
tangential components of the electric and magnetic fields, so
it permits to apply a plane wave with normal incidence to ⌃.

C. Obtaining the linear system

Since the fields are decomposed in entering and exiting
components, it holds that

Fb = Fb+
+ Fb�, (23)

U = U+ + U�. (24)

The array U is formed by two contributes. The electromotive
force due to the imposed exitation, which is fully known, is
expressed by U� and is nonzero only in correspondence of
the entries of the primal boundary edges of ⌃. The array U+,
on the other hand, is unknown and in correspondence of the
primal edges of ⌃ it accounts for the electromotive force due
to the wave exiting ⌦. Starting from (23) and using (20) and
(24), discrete port boundary conditions are deduced

Fb = Fb+
+ Fb� = MY U+ + Fb�

= MY (U � U�) + Fb�

= MY U + 2Fb�.

(25)

Finally, by substituting Fb from (25) in (13) we obtain

(CT M⌫C � !2M✏)U + i!MY U = �2i!Fb�, (26)

which allows to apply a magnetic field excitation, computing
the entries F b�

i of Fb� as

F b�
i =

Z

ẽbi

h� · dl. (27)
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z = 0

Ferrite tiles ⇧0

Fig. 3. Sectional view of the cone-ferrite assembly (not to scale). The port ⌃,
the impedance calculation plane ⇧ and the impedance de-embedding plane
⇧0 are indicated.

where ẽbi are the auxiliary dual edges of ⌃. Otherwise, if an
electric field excitation is wanted, (22) can be used to obtain

(CT M⌫C � !2M✏)U + i!MY U = 2i!MY U�, (28)

and computing the entries U b�
i of U� as

U b�
i =

Z

ebi

e� · dl, (29)

where ebi are the primal edges of ⌃.

V. EQUIVALENT MODEL

The original model of the unitary cell represents the cone-
ferrite assembly in full detail. Material parameters of ferrites
and cones were obtained from vendor datasheets. Such detailed
modeling requires a very fine discretization that implies the
need of more computing and memory resources. For this
reason, when a full anechoich chamber has to be simulated, the
number of elements could become prohibitive, so a simplified
model is wanted.

A. Wave impedance calculation
Once the problem (26) is solved, wave impedance can be

calculated everywhere in ⌦. In our application it is calculated
on a plane ⇧ placed at z = 0, parallel to the boundary wall
(Fig. 3). A grid of 20⇥20 points was defined on the plane
⇧ and then the tetrahedrons containing these points were
identified. For each tetrahedron T1, . . . , Tn wave impedance
values Z1, . . . , Zn were calculated. Finally, wave impedance
on ⇧ is obtained from

Z⇧ =
1

n

nX

i=1

Zn. (30)

B. Equivalent wall model
The calculated impedance Z⇧ must now be de-embedded

to the boundary ⇧0 at the back of the ferrite tiles, obtaining
a new impedance Z⇧0 . Impedance Z⇧0 is calculated using a
standard formula from transmission line theory [3]

Z⇧0(z) = Zc
Z⇧ � iZc tan(�z)

Zc � iZ⇧ tan(�z)
, (31)

where Zc =
p

µ/✏ is the characteristic impedance of the space
where the wave propagates. Z⇧0(z) is a function of z, the
distance of ⇧0 from ⇧.

ZΠ′ (z) = Zc
ZΠ − iZc tan(βz)

Zc − iZΠ tan(βz)
,
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Fig. 4. Sectional view of the equivalent model (not to scale). The whole
volume of the equivalent cell is made of air and the de-embedded impedance
condition is applied on the plane ⇧0
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Fig. 5. Electric field compairson between full and equivalent model.

VI. NUMERICAL RESULTS

Two models of the unitary cell were developed, one with
full details and one composed entirely by air and terminated by
an impedance calculated as in (31). Simulation was performed
on the first model, imposing a plane wave excitation on ⌃ with
an incident electric field of 1 V/m. Then wave impedance was
calculated on the plane ⇧, sampling ⇧ on 400 evenly spaced
points distributed on a 20⇥20 grid. Impedance Z⇧0 was then
calculated according to (31) and used as boundary condition
on the simplified model. Finally the port boundary condition
was used again to impose a plane wave with the same
characteristics of the previous experiment on the boundary ⌃
of the simplified model. Numerical results (Fig. 5, 6) confirm
the good quality of the equivalent simplified model since the
error was below 5% in most of the zone of interest, despite
the drastic reduction (20 times) of the number of elements.

Experiments were made with EMT, a new, general pur-
pose DGA workbench written in C++11. The simulations
were performed on MacOS X 10.9.2 running on a Core i7
3615QM with 16GB of RAM, Clang/LLVM 3.4 compiler
and MKL PARDISO solver. The full model mesh included

about 446000 tetrahedrons, which gave rise to a problem of
485572 unknowns. Problem assembly took 8.34s, while the
solver took 55.22s. The simplified model consisted of about
22000 tetrahedrons, which gave rise to a problem of 26624
unknowns: assembly time was 0.45s while the solver took
0.48s.
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the full one.

VII. FINAL REMARKS

A novel port boundary condition was developed in the
framework of the Discrete Geometric Approach. The new
tool was used to study a piece of an anechoic wall in full
detail, with the goal of obtaining an equivalent model of the
real anechoic wall. In the context of the DGA the developed
port boundary condition is a wide generalization of the wave
propagation problem since it collects in a single equation a
number of other important boundary conditions.
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Equivalent model for anechoic walls: results

The proposed equivalent model gave very good results

it allowed 20x reduction of mesh elements

it allowed 60x reduction of computation times

in the whole area of interest the relative error was below 5%
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Equivalent radiating elements

We would like to have a simple object (a sphere) that radiates a field
equivalent to the one that is radiated by a more complex antenna

Simulate the real antenna with NEC/HFSS/FEKO

Calculate the field on the reference sphere

Insert the sphere (that radiates the calculated field) in the
simulation environment

Two regions:

Total field

Scattering field

The formulation allows to evaluate (insi-
de the sphere) only the “reaction” of the
environment.

(CTMνC− ω2ε)U = 0

(CTMνC− ω2ε)Us = 0

Ua,Fa
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Equivalent radiating elements: results

Applicability conditions of the model

the sphere must have dimensions similar to λ

the field must be calculated sufficiently far away from the sphere
(> λ/2)

Under these conditions, the model gives very good results!
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Anechoich chamber models

But the code was built to simulate entire anechoic chambers...

Experiments have shown that the
predictions of the code are very
accurate!
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Other applications and features

The developed tools (both theoretical and software) allow to do other
interesting things:

Waveguide propagation

Adaptive mesh refinement Perfectly matched layers
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The code (1)

How do we translate all this theory in code? The general strategy to
solve a numerical problem with DGA is

Read the geometry

Read simulation parameters (frequency, boundary conditions,
materials, ...)

Assemble the linear system of the discretized problem

Solve it

Interpolate quantities (for example to get E and H)

Output them in some format
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The code (2)

Writing a Matlab script that solves our problem is not too difficult, but
we would like to have something more flexible. In particular we want a
code that is:

Expandable and understandable. It should be easy to:

code new problems
add new numerical solvers
add new data import/export procedures

Modular. If something breaks it must not break surrounding things

Debuggable and correct.

Efficient. We want to be able to scale from small problems to very
big ones

To achieve these goals some ingredients are needed:

A serious implementation language: C++11

A good design: no code is written “on the fly”, without thinking
about the structure

Efficient memory usage and parallelism
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The big picture

Interactive

Debuggable EMTProblemModule

SiloExporter

EMTSolver

QuantityEvaluator
Runner

EMTVector

EMTMatrix

Propagation Electrostatics

GeometricElement
Store Index

Index
Index
Index

Script Mesh

Simulation
results

PropertyStore
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How does it look?

Time for a little demo!
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EMT for programmers

An important goal of EMT is to be programmer-friendly. I’ll try to show
you some examples on how C++ helped me in giving a clear structure to
the code, leading to easy growth of the whole project:

What is an EMT module and how you write one

How the numerical solvers are interfaced

How poorly written Fortran code is hidden behind simple interfaces

The geometry representation and how it leads to safe code and
simplifies parallel execution
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The EMT modules

The code is composed by modules: if you want to solve a propagation
problem, you enter the propagation module. The modules are one
example of the extendability of EMT.

Modules are “templates” (not in the C++ sense!) that allow the
programmer to code new problems in a simple way. All the modules
(even an empty one) provide access

to the geometry

to all the numerical solvers

to the data I/O facilities
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Coding a new problem

Modules encode in some way the general strategy we mentioned some
slides ago. Coding a new problem is simply matter of

creating a new module by subclassing EMTProblemModule (some
10s LOCs)

writing a system assembler (the hardest part)

telling the solver to run (1 LOC)

choosing which data to export (some 10s LOCs)

registering your brand new module with the system (1 LOC)

Let’s see some code, the electrostatics module.
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The numerical solvers

Another example of extendability is how the numerical solvers are
interfaced. Each problem benefits from specific solvers (BiCGstab vs.
multigrid vs...) and there are plenty of libraries implementing them, each
with its own interface.

In EMT to call all of them you need only to know that some solver exists.

This is possible with the Factory, an OOP design pattern.
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How solvers are interfaced

Whichever solver you get, and whichever matrix/vector format it
supports, you only need to

make it look like the generic solver (by subclassing EMTSolver),
EMTMatrix and EMTVector

register it with the system

EMTProblemModule

SiloExporter

EMTSolver

QuantityEvaluator
Runner

EMTVector

EMTMatrix

Propagation Electrostatics
Class
ClassSpecific
Solvers Class

ClassSpecific
Vectors

Class
ClassSpecific
Matrices

After this, all the modules of EMT are aware of the new solver and able
to use it. How? You make your choice at runtime with the solver

command we already seen.



Introduction The code EMT for programmers C++ in scientific computing Conclusions

Representing the geometry

The problem domain Ω, as we already know, is discretized in a
tetrahedral grid which could be composed of millions of elements. A
good representation of the geometry has direct impact on

the performance and the scalability of the code

the safety of the code

Let’s see some requirements

Keep track of single nodes, edges, triangles and tetrahedrons

Each element is composed by the indices of its points

Each element must have an identifier

Discard duplicates while building data structure

Fast lookup of elements in both directions (index → element and
element → index)

Add operations to the elements of the geometry easily
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Geometry data structure example

T1

T2

T3

e2

e1

e3 e4

e6

e5 e7

n1
n2

n3

n4

n5

x

y

Point X Y Z
1 x1 y1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

Node Points
1 1
2 2
3 3
4 4
5 5

Edge Points
1 1 2
2 1 3
3 2 3
4 2 5
5 3 4
6 3 5
7 4 5

Triangle Points
1 1 2 3
2 2 3 5
3 3 4 5
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Geometry data structure implementation

Each geometric object (Node, Edge...) has its own class Node, Edge, ...
Let’s see some code =⇒ simplex.hpp

One implementation, all possible dimensions

Only one place to touch when maintenance is needed

std::array (C++11) is a wrapper around C arrays =⇒
exact memory usage known
no memory allocator overhead of std::vector
safe

They are kept in Index<T> which are wrappers around std::vector<T>

and provide O(1) direct lookups and O(log n) inverse lookups.
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Preventing programmer’s mistakes

Let’s go back to that strange inheritance...

1 template<s i z e t d imens ion>
2 c l a s s S imp le x : p u b l i c I d e n t i f i a b l e O b j e c t<Simplex<d imens ion>>
3

Do you remember that each element has its own identifier? How it is
possible to be sure that you are not using a triangle index where an edge
index is required?
There is a TMP pattern called Curiously Recurring Template Pattern:
let’s see how it allows us making impossible to introduce this kind of bug.
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Operations on the geometric elements

Operations on the geometric elements are done by means of Visitors. A
Visitor is a well-known OOP design pattern which allows us to clearly
separate algorithms from structures on which they operate.

Client
+ visit(ConcreteElement)

<<interface>>
Visitor

+ accept(Visitor)

Element

+ accept(Visitor)

ConcreteElement

+ visit(ConcreteElement)

ConcreteVisitor

<<realize>>

There is no structure to traverse, so
it is not the classical application of
the Visitor, but

Element “hierarchy” is static
and should never require
modification

Adding operations is frequent

The Visitor pattern seems to be a
good choice.
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Using the visitors

How to get the barycenter of a tetrahedron using a Visitor?

1 T e t r a h e d r o n t = ges−>l o o k u p t e t r a h e d r o n ( t e t i d x ) ;
2

3 B a r y c e n t e r V i s i t o r bv ;
4 t . a c c e p t ( bv ) ;
5 P o i n t b a r y c e n t e r = bv . g e t R e s u l t ( ) ;

In the code there are tens of Visitors performing lots of tasks, from the
simplest ones (calculation of volumes, barycenters, ...) to the most
complex ones (system assembly, field interpolation). It looks complicated,
but...



Introduction The code EMT for programmers C++ in scientific computing Conclusions

EMT and parallel execution

...an interesting fact about Visitors is that they are designed to not share
state, so you get parallel execution at no cost (except memory
bandwidth):

1 s t d : : v e c t o r<Point> b a r y c e n t e r s ;
2 u s i n g PVR = P a r a l l e l V i s i t o r R u n n e r<B a r y c e n t e r V i s i t o r , Tetrahedron >;
3 PVR p v r ( b a r y c e n t e r s ) ;
4 p v r . run ( ) ;

EMT is almost entirely parallel and can use all the cores you throw at it!



Introduction The code EMT for programmers C++ in scientific computing Conclusions

Wrapping up Fortran crap...ahem...code!

Historically, Fortran had no pre-
processor. So, if you need so-
mething that in C++ reads like
this =⇒

1 template<typename T>
2 T f o o (T x )
3 {
4 r e t u r n x++;
5 }

In Fortran you end up having

1 FUNCTION f o o f ( x )
2 r e a l : : x ;
3 f o o f = x +1;
4 RETURN
5 END FUNCTION

1 FUNCTION f o o d ( x )
2 d o u b l e : : x ;
3 f o o d = x +1;
4 RETURN
5 END FUNCTION

1 FUNCTION f o o c ( x )
2 complex : : x ;
3 f o o c = x +1;
4 RETURN
5 END FUNCTION

This is no joke, but the sad truth! The best numerical solvers around
(MUMPS, PARDISO, AGMG) do the nastiest things known to the
mankind in order to deal with different data types.
How could C++ help us in isolating that? Let’s see the code of the
MUMPS wrapper.
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Typical objections to C++ in scientific computing

In many years, I heard too many unfounded things about C++. The
funniest ones:

C++ is slower than Fortran

The level of abstraction of template metaprogramming leads to slow
code.

C++ has no complex numbers

Memory footprint of C++ programs is larger than Fortran and not
controllable

C++ compilers do a poor job in code optimization

There are no linear algebra libraries for C++
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Myth 1: C++ is slower than Fortran

Fortran makes some assumptions that, in average, allow the code of users
unaware of what is going on under the hood run at decent speeds.
Examples:

Parameter passing: Fortran uses byref, the C++ default is byval. If
you want byref you must use &. Passing a 100x100 matrix by value,
obviously slows down your code a bit!

Pointer aliasing: Fortran assumes that two pointers point to
non-overlapping memory, but C++ assumes that they overlap. If
you want to override this, you must use the keyword restrict2.

Virtual methods: they have to be correctly dealt with

C++ makes conservative assumptions that make your program run
safely. So, normally, C++ speed problems are not in the language itself,
but between keyboard and chair.

2Only in first approximation: (maybe) C++17 will address the problem correctly.
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Myth 2: Template metaprogramming is slow

The quick answer to this objection is “please go and do some
experiments (or read the assembly generated by the compiler)”.

With template metaprogramming you can give to the compiler lots of
useful information about your intentions, so it can make some
assumptions that otherwise cannot. Actually, template metaprogramming
is a way to make your code run faster.

An interesting example comes from some C++ linear algebra libraries:
thanks to TMP, these libraries can choose, in a sequence of matrix
operations, the order of operations which runs faster. And at compile
time!
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Myth 3: C++ has no complex numbers

Complex numbers are part of the STL.

1 #i n c l u d e <complex>
2

3 s t d : : complex<double> z ( 1 , 3 ) ;
4

Thanks to template metaprogramming, complex numbers and their
operations are optimized for the particular type on which you instance
them.
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Myth 4: C++ memory footprint is big and uncontrollable

Well, if you use STL without thinking about what you’re doing, it is not
too easy to understand how you’re using memory...but in C++ memory
is controllable at the bit level.

The representation of the geometry in EMT is an example.
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Myth 5: C++ compilers do a poor optimization job...

...which in almost all cases translates in “programmers write poor code”.

C++ is the language of choice in every kind of software project, so
optimizers inside compilers received lots of attention. Actually there are
cases in which they are really smart:

http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-

array-faster-than-an-unsorted-array
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Myth 6: There are no linear algebra libraries for C++

I know at least 4 of them:

Armadillo

Eigen

µblas (in Boost)

Newmat
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Some words about Armadillo

EMT uses Armadillo (http://arma.sourceforge.net/).

It has matlab-like syntax

It uses automatically BLAS and LAPACK if found

It is open source

It is very fast
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Conclusion

Maybe this talk was boring for expert C++ programmers, but it was not
intended as a showcase of C++ tricks.

The real goal was to show how C++ is a powerful tool also in fields
where normally is not considered an option, as in numerical software.

The language, coupled with (minimal) good software engineering
pratices, allowed me to write from the ground up a software in a domain
where my knowledge was close to zero.
C++ helped me in

organizing the code in a really structured and modular way

not sacrificing performance, scalability and expandability

excluding entire classes of stupid but hardly debuggable bugs

avoiding domino effect when I took the wrong route

...
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Conclusion

All this doesn’t mean that my code is perfect! Some parts of the code
could (and should) be rewritten in a better way and there are some
modules where code is rotting...but taking care of all the 40000 lines of
code requires time!
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Thank you!

Thank you for your attention!

I would like to hear your comments, questions and suggestions
matteo.cicuttin@uniud.it
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